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Decentralised Navigation and Collision Avoidance for Aircaft in 3D
Space

Giannis Roussos and Kostas J. Kyriakopoulos

Abstract— We present an algorithm for the distributed nav-  exploit previous results [3] to build a control scheme that
igation of nonholonomic aircraft-like agents in 3D space. ie  respects the aircraft’s capabilities and complies wittremnir
proposed control scheme offers improved applicability for — ATC practice. Our aim is to avoid complex and erratic
aircraft navigation and compatibility with ATC practice wr t maneuvers. as thev increase the pilots’ workload. prevent h
previous work. The algorithm maintains a desired horizontd i ' < y p o ,p_ )
velocity, while limiting the climb or descent angle within ~Man Air Traffic Controllers from maintaining good situation
predefined bounds. Moreover, it is designed to favor strai awareness and reduce fuel efficiency and passenger comfort.

y p g

and level flightz yielding more sengible manoeuvres that ragjre In our previous work [3] an augmented 3D unicycle model
“Z‘:;Jocr?ﬁanségeg}”tgheezort;ro;':?“'at'on results demonstrate te  \yith the linear velocity and three rotation rates as control
P P ' inputs was used. In this work we use the horizontal speed,

. INTRODUCTION the heading_ rotation rate and the verti_cal speed (ratt_a wiocli _
or descent in ATC terms) as control inputs. Essentiallys thi
: . . X : ' corresponds to a planar unicycle with the addition of the
increasing attention during the last years. Gr_owmg affira vertical speed. Such a kinematic model is not limited to
levels call for a new way to handle tasks in ATC, as th(?jl'rcraft, but can also apply to certain underwater vehicles

current airspace structure and the centralised ATM modF ]. Its use here allows three major improvements wrt [3]:
currently used will not be able to cope with future air The set of controls is native to ATC applications
traffic. Moreover, as Unmanned Aerial Vehicles (UAVs) are where vertical maneuvering is described by the vertical

becoming increasingly popular, some form of automation is velocity rather than the elevation angle.

requirec_zl to allow _their safe integrgtion in air tra_lffic. . o Vertical and horizontal maneuvering are decoupled
Conflict Detection and Resolution (CD&R) is a critical allowing level flight when vertical speed is not needed.

function within ATC, and is divided into three levels [1]: This yields simpler, more predictable manoeuvres

« Long-term, i.e. flow management in a horizon of hours. , wjith the proposed control law, the maximum climb and
« Mid-term, where collision-free trajectories are derived  gescent slope can be independently bounded.
for a horizon of tenths of minutes. Other work on constant velocity collision avoidance in-

« Short-term, handling collisions to 10 minutes away. ¢ des optimisation solutions, using non-cooperativergo
Optimisation wrt area congestion, fuel efficiency, arrivatase) schemes [5], or decentralized, cooperative appesach
time, passenger comfort, etc., is usually employed in Long], [7], as well as geometric algorithms [8]. Although
and Mid-term CD&R. Such approaches can yield very goothe formulation of the collision avoidance problem as an
results, but often require considerable time, while perforoptimisation problem can yield efficient solutions, large
mance is not always verified. Short-term CD&R on theomputational resources are usually required, making opti
other hand, requires guaranteed performance to handl¢ flighisation more relevant to centralised implementations and
safety, and fast response, to allow real time application. higher CD&R levels (Long- and Mid-term). [8] uses the

Decentralisation is a key aspect in future air traffic sysintuitive collision cone concept, but requires conflictdr
tems, investigated in project iFLY [1]. A centralised sysinitial conditions to guarantee collision avoidance.
tem is usually able to offer globally optimal solutions, but The rest of the paper is organised as follows: section I
requires many computational resources and communicatidarmulates the problem we treat, followed by a brief intro-
Decentralised methods are more efficient and tolerant wituction to Dipolar Navigation Functions in section Ill. The
respect to localised faults. Because of the safety critiwial proposed control scheme is presented in section IV, while
of Short-term CD&R and the limited resources of aircraftsection VI provides simulation results for our algorithm.
decentralised methods are preferred in this level of CD&RSection VII summarizes our conclusions.

This paper considers the control of multiple autonomous Il. SYSTEM AND PROBLEM DEFINITION
fixed-wing aircraft flying in 3D space, while avoiding col- ' ) . .
lisions. The Navigation Functions (NFs) [2] framework is We use the following kinematic model for each agent
employed in an algorithm that is applicable in ATC. We i { & }

.=

Automation in Air Traffic Control (ATC) is drawing
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G, captures all possible collisions involving agentG; is
zero when theé™ agent participates in a conflict, and positive
otherwise.yy; is the goal function, fading at the destination
giqa- Function f; = fi,(G;) enables cooperation between
neighboring agents, whilgy; bounds agents in the spherical
workspace. The artificial obstaclé,;,; renders the potential
field dipolar. Finally,k is a positive tuning parameter. More
details on the construction @; can be found in [10].

Navigation Function (2) provides almost global conver-
gence to the agents’ destinations, along with guaranteed
collision avoidance [11]. The potential of such a Navigatio
Function in a2D workspace with two obstacled;, O, is
shown in Figure 2. The targetiszq yq | =[7 0],
with orientationp, = 0 and the corresponding nonholonomic
obstacleH is the linex = 7.

Fig. 1. Model Coordinatesy; = [z; y; zi]T, ¢; and controlsu;, w;, wj.
Descent angley; and vertical velocityw; shown negative during descent.

whereq; = [ = yi 2 }T is the position vector wrt an
earth-fixed frame (Figure 1),J; = [ cos(¢;) sin(¢;) }T,
ni=x Yy ]T is the projection of the agent’s position on
the horizontake — y plane,z; its altitude andp; the heading
angle, i.e. the angle between the agent’s longitudinal axis
x axis. The control vector comprises the horizontal velocity
u;, vertical velocityw, and the angular heading velocity.
This model is a unicycle on the—y plane, augmented with
the vertical velocityw; adjusting the altitude;. We define
the climb or descent angte;, between the resultant velocity

vectorg; = [ @; ¥ % ]' and the horizontat — y plane,
a; = tan™! SIZ’—P Positivea; represents climbing.
Compared to the model used in [3], (1) decouples horizon- Fig. 2. 2D Dipolar Navigation Function

tal and vertical maneuvering, allowing independent regula
tion of the vertical velocity. We do not consider the pitcldan
roll angles or the aircraft dynamics here. We assume that the
low level control systems, i.e. avionics onboard the aftcra
will control the pitch and roll angles to achieve the desiregh  preliminaries
linear and angular velocities:, w; andw; respectively).

IV. 3D AIRCRAFT NAVIGATION

The motivation for the proposed control scheme is to

A. Problem Statement

produce trajectories that are compatible with the aircraft

We address the decentralised navigation of a grougharacteristics and constraints, as well as with currer AT

of agents described by (1), to their destinationg;
[ zia wia ]T and altitudez;4, with heading angle;,. Each
agent has a desired absolute horizontal spegd> 0, that

practice. Thus, we develop a control logic that yields more
sensible maneuvres than [12], while still maintaining the
formal guarantees for collision avoidance and stabilarati

can be constant, or regulated independently of our algarithThe control scheme we suggest relies on a dipolar®yK2)
(e.g-ug, can be the optimal cruising speed for the currento ensure safety and convergence. We employ the gradient

altitude), and maximum climb and descent anglgs > 0,
a;p < 0, respectively. Our aim is to use the desired spegd
for as long as possible, and ensure that all agents respect
above climb and descent angle bounds,d.e < «; < a;c.

I1l. DIPOLAR NAVIGATION FUNCTIONS

Navigation Functions are artificial potential fields, intro
duced by Rimon and Koditschek [2] for robot navigation
Dipolar Navigation Function$9] employ an additional arti-

ficial obstacleH,,,, to better handle non-holonomic agents,

yielding trajectories tangent to the target orientatiorthe

destination and avoiding in-place rotation. Thus, eacimtaige

is driven to its target with the desired orientation.
Such a Dipolar Navigation Function is of the form:

vai + i
7 2
((vai + fi)* + Hun, - Gi - Bo,)

P; =

0P, —

Vid; = G- [ ®in Py Dic ]T of ®; wrt agent'si
positiong;, where®,,, = %, etc. AsV,;®; is expressed in
Harth-fixed coordinates, we use its projection on the agéent’
longitudinal (heading) direction?; = J," - [ @, P4y |

The sign of P;, s; = sgn(P;), determines the direction of

motion on the horizontal plane, where:

. sgn(z) £ {

L
_1’

if >0
if z<0.

The control law for the vertical velocityy; depends on
the elevation angle of the negated gradient, i.e. the an-
gle between—V;®; and the horizontal planea,,; =

(piz
V <I>121-+q>$y

), we bound the reference elevation angle within

—tan~!

(_

. Since ayy; can take any value in

m T

272
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the agent’s feasible climb and descent angles:

Q;D, Onhi < QD
Q; = § Qnhi, @D < Qnhi < Q40
Q;Cy,  Qnhi > 04C.

The corresponding reference slopds #; = tan d;.

For the design of the control scheme we use three criteria:
1) Safety and Stability:Ensuring a decreasing rate for
potential®; is crucial to guarantee convergence and collision
avoidance. The time derivative df; can be written

N
b= SV 0T 4y = Pt i +

Jj=1

where the partial derivativé%‘ sums the effect of all but the g, 3.
ob, __ uJ
D= 2 Vi®i { v

J
This criterion is encoded into the continuous switch

il (1. — |P; &
acpizsat(lul( | |+8)+at> 3

Target CylinderC;, Target SphereS;, Belt Zone B; and

. , . Maneuvering Spac&; around the targety;;. o,,; varies linearly inB;.
i agents’ motion on®;: 9 Spack 98ltid- Tni y s

|uil £ P
0, <0
wheresat(z) =<z, 0<z<1,
1, =z>1

ande is a small positive constant. Thusg; is:
« 1 when horizontal velocity,; ensures thab < — lu;| e,
« 0 whenu; andw; = ;u; can maintaind; > — |u| e,
e 0 < 0g; <1 whenu; together with a nonzero vertical

velocity w;, where|w;| < |¢| u;, yields ®; < — |u;| e.
2) Horizontal distance from targetFor each agent we
define the vertical Target Cylinder (TC) around its destorat
n;q, as shown in Figure 3¢; = {n; | ||n; — nil| < e}
C; is surrounded by a belt zoné; of thickness b;,
B, = {n;|c <|ln; —nul| < ¢+ b}, while the space
outsideC; and B; is the Maneuvering Spac®;: R; =

Fig. 4. Angle parameteré, 9?, aircraft limits ;, o; p and switcho;
with respect to the gradient elevation anglgy;.

An agent may be driven by the potential’'s gradient to enter
its TC and exit afterwards. As it is shown in the stability
analysis though, this does not affect the performance of the

{n; | ||n; — ni4|| > ¢; +t;}. Finally, let us define the algorithm, since all agents eventually stay in their TCs.
Target SphereS;, completely contained inC;: S; = 3) Elevation angle of the negated gradietite agents are
{q: | ||g; — qial| < ¢;}. The proposed control strategy usesallowed to fly horizontally only when the absolute elevation
different control schemes i;, B; and R;. Inside R;, angle of —V,;®;, |ann:| is lower than a high bound!.
the main objective of each agentis to maneuvre away When |ann;| > 67, vertical maneuvering via; is gradually
from collisions and towards the direction of the negatedctivated, untilann;| = 0; > 69, wherew; is used to yield a
gradient—V,;®;, while maintaining horizontal speed,; and resultant velocityj; matching exactly the reference elevation
horizontal flight (v; = 0) for as long as possible (i.e. whenanglea;. This is realised via the switch,,; (Fig 4):
safety and stability are ensured). Following exactly ttopsl R
of —V,;®, is not required inR;. Inside C; the horizontal u; = sat (@A— Ianhi|> .
speedu, is gradually reduced, while the vertical velocity 6; — 69
follows the gradient’s slope, so that each agent converges t .
its targetq;. The belt zone; ensures continuous control Wheremin (¢, [aip|) > 6; > 09 > 0. Thus, o, is:
inputs on the transition betweeah and R;. The complete o 0 when|ayni| > 6;,
notion is captured by the switch,;, plotted in Figure 3: o 1 when|ann;| <69, and R
llri — maal| — e e 0< 04 <1whenb? < |ann| < 6;.
Oni = sat <b—) 5 (4)
K3

B. Control Scheme

0, n; € C; The control logic is built around the following principles:
so thato,,; = q 1, n; € Ry « A nominal absolute speeld; is used foru; regulation.
a€ (0,1, n;€B;. U, is equal to the desired absolute horizontal spegd
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wheng; ¢ S;, i.e. when agent is more thanc; away
from its target, while it is continuously reduced@pas
the agent approaches its target insije

The absolute horizontal velocity;| is kept equal to the

nominal signall; when 2% < U; (|1P;| — £;®;. — ¢),

where atan2(y, ) arg (z,y), (z,y) € C andp;
J;; - (n;1 — ny14) is the position vector wrt the destination,
projected on the longitudinal axis of the desired orieotati
Finally, ¢, is a small positive constant arg a positive gain.
To ensure the continuity af,y; on the destination, where

i.e. the combination of horizontal and vertical velocitiesV;®; = 0, we use the following approximation scheme [13]:

s;U; andUjt;, respectively, can maintaif; < Uje.
Vertical velocity w; is kept zero when all three of the
criteria described above are met, i.e.:
1) Agenti is in its maneuvering zoney; € R;.
2) Horizontal speed.; yields ® = Pu; + 351;
—Ul'E.

i

<

3)
9?! |04nhi| S 910
Thus,w; = 0 only wheno,; = 0¢; = 00; = 1.

vering viaw; is used up to an elevation slopg by
settingw; = t;u;. If this alone is not enough to achieve
d; < Use, the magnitudes of both linear velocities ar
increased in a continuous way to achigiye= lu;| e.
Agent’si slope is made equal tb when any ofog;,
oni, 0a; DECOME Zero, i.e. any of the following hold:

1) Agentiisinits TC,n; € C;.

2) The combination of horizontal speéd and ver-

tical speedt;U; does not satisfyi% < —Use, i.e.

U P + Uit @ + 935 > —Uge.

3) The gradient’s absolute elevation angle is at Iea%onsequently we deduc®;®]

11 |anh1| > 9
Heading angular velocity; uses the control scheme
presented in [3] to steer each agent towards the headi
angle ofsgn(P;)V,;®; and keep control effort low.

The gradient’s absolute elevation angle is at most

When safety and stability are at risk, vertical maneu-

[S)

$nhi;

¢nh1( 2p3 +%€pw)+¢7d€( (e pi)3+3e(e*91,)2)7 pi<e

\/ P2+ <I>2 and e a small positive constant.

Thus, ¢gun; is continuous WherpZ =0, Whereql = Qid:
(bnhz (qui) hH; d’nhl - hmO (bnhz - (bnhz L (bzd

Pi pi=

¢ pi>€
nhiZ

where p; =

V. SAFETY AND STABILITY ANALYSIS

Theorem 1:A team of agents described by (1) under the

control law (5) remains alwaysafe i.e. no collisions occur.
Proof: Since agents are considered spherical, collisions

can occur only by translation. Thus, to ensure collision
avoidance, it suffices to show that each agames its linear
velocitiesu;, w; to stay away from its neighbors. By con-
struction, a Navigation Function is uniformly maximum on
the boundary of other agents and its negated gradient points
away from them. By the definition ef,,;, &; andt;, one can
verify that#;®,. < 0. From the control law (5a), we derive
that Pu;, < —P;s;U; = — |P;|U; < 0. Additionaly, (5b)

yields ;. w; = t;®,, (1 —mln(oqn,am,om ) |ui| < 0.
-q; = Pu; + @ w; <0.
Consider a group of agents, initially far apart from each
other so that®;|,_, < 1 Vi. As &; is continuous and
Bfferentiable in space, a collision would imply that atdea
one colliding agent moved towards the direction & ;®,,

Based on these principles, we propose the following contrghusing®; to attain its maximum value of. This cannot

scheme for the linear velocitiag andw; of each agent:

—sl O < U (|| — 0 — <)
i = U; , ~
Z Szlﬂr-‘_it%tu a{;l > Ui(|Pi|—ti‘1)iz—€)

w; = (1 — min (Gei, Oni, 0ai)) ti |uil -

(Sb)

hold, asV,;®; - ¢; < 0, therefore no collisions can occur
under control law (5). ]
Theorem 2:Each agenti described by (1) under the
control laws (5), (7) is asymptotically stabilised to itsgat
q;q With the desired heading angilg,.
Proof: We employ the candidate Lyapunov function:

The magnitudeu;| increases in the second case of (5a),

while the transition is continuous bg/ construction:
3@1 Use+—7+ at

> Ui (|P] - 19 —€) = 7 e > Ui
The nominal absolute horizontal veIocﬂg/Z is
id > 0 Cz
e {uqd»nvd e ©6)
7'C7i7' “uig, Ny € C;.
The angular velocity; is given by:
0, M; > €4
wi = 9(1—%) 0< M < ey @)
Q;, M; <0,
where M; 2 ¢un, (¢ — dnn,) and Q; =
—kg (i — Onn,) + Onn,. The nonholonomic heading

angle ¢nn; represents the heading efn(p;)V,;®;:

Pnni = atan2 (sgn (p;)Piy, sgn(pi) Piz) 8

N

1
VZZVi, Vi:q)i"l‘§(¢i_¢nhi)2-

i=1

9)

We consider the complete multiagent system: f(x):
X = [qlT QY $1 . SN bnn1 - T
F(X) =[ui-d] wi . un-Jf wn w1 . WN ant - Guhn
In order to use the chain rule in [14], we use the Filippov set
[15] K[f(x)] and the generalised derivative [16] bf(x):

1

$nnN ] s .
]

Klfilvl] r2iVadi
K[ulif]JN Zw V.N':bi
Klwy] (¢1—¢nn1)
K[f] = o oV = :
: (6N —bnnn)
wN —(¢1—¢nn1)
d)nhl .
Lo -_(¢N_.¢nhN)—
d)nhN .
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Thus, we calculate the generalised time derivativé’¢k):

V= K[

£eov
:iiK[ui]Vﬂ); [ ‘é } +ZZK[W]‘?£Z+
+§I
—ZKulP +D 0> Ku)v,e] [ I; ]

)

(bnh

+ZKwZ<I>1Z+ZZKw7 Zeez,
)
wheref; = (¢; — dnn:). By (7) we deduce:
—nhi, . M; > ey
éiz —{k(ﬁ(l—%)—F%}'@i, O<Mi<€¢
—kyb;, M; <0.

We discriminate between the following three sets of agent§: = {n: (|7|U; —

A{’L'G{l, o U|Pz|+UZESO}
{26{1, ,N}‘O< 8(137 UZ|P1|+U16§—£ZU1(I)ZZ}
{26{1, ,N}‘B@T U |Pi|+UiE>—t~iUi(I)iz}

Slmllarly, we define the following non-intersecting sets:

Ty 2{ie{l,...,N}| M >e4},
To2{ie{l,....,N} 0< M; <ey},
Ts 2 {ie{l,...,N}| M; <0}.

By the control law (5) we deduce:

K[u] . {_K[Sz] : U17 1€ Ql UQZ
' —K[s]‘gf% i€Qs

K[wl] = (1 — min (O'qn, Onis Uoﬂ‘)) fl |’U,Z| .
Note that(1 — min (0¢;, opni,0ai)) > (1 —0e;) > 0 and
t;®;. < 0. Using control law (5a) and (3) we derive:

0, i€ Q
(1—04:) = % €(0,1, i€Q
1, i € Q3.

Using the above, we proceed with:
~ 09,

Q:1UQ:
U+ %L 0%,

g

+ (1 = min (0, O, 0ai)) i [ Piz = Y idnni—
T

M\ | i
= lkd, (1 = —) - (b“}”] 07 = 2 ko7 <
- € €o Ts
0P;
<
<3 {- i+ G}
_Z{|Pi|Ui— <Ui(|Pz‘| —¢) ot ) ot }_
Q2

Use + 2%

—Z{(lﬂl—f@w)ﬁ—aii}—ZMi—
—Z{@, (1——) 07 + } 21%92
_Z{— } > UE—ZM

Q2UQ3
—Z{k¢<1‘_)92 } Zk¢92<0

Since eachV;, and consequently/, is regular [16] and
the level sets o are compact, the nonsmooth version of
LaSalle’s invariance principle [14] can be applied. Thirg t
closed-loop system converges to the largest invariantesubs

S: 82 {[qT, ¢]T |0 e V. For the setdy, T we deduce:

;Mi>0, Z[k¢(1—%>92 %2] > 0.

. - €s £
For V = 0 to hold, a(})lz‘ must be inT3, thus:
— = ovi € Ql)/\(EUi =0Vi € QQ)/\

A (0; = ¢i — nn, = OVi)}.
Since |P|U; — 2%¢ > <U; > 0, the equality must
hold inside S, i.e. U; = 0, requiring q; = q;q SO that
®i = Onh, = ¢iaVi. Thus, S reduces to the singleton
{n: (g; = qiaVi) A (¢; = ¢:iqVi)}, i.e. all agents are sta-
bilised to their destinations and desired orientations. |

VI. SIMULATION

We used our algorithm in a test case identical to the one
in [3], consisting of5 aircraft with converging straight line
paths between their start and final positions. The desired
horizontal velocityu;; of all agents was set t6 - 104,
while the maximum climb and descent angles used were
a;c = 15° anda;p = —20° respectively. Finally, the radius
of all ¢; and S; was¢; = 0.01, 89 = 10° and §; = 15°.

The resulting agents’ paths are shown in Figure 5 while the
horizontal linear ;) and angular velocity.;) are depicted
in Figure 6 and vertical velocities; are shown in Figure

Fig. 5. Aircraft's trajectories in 3D space
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Fig. 6. Horizontal and Angular Velocities
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Fig. 7. \Vertical Velocities

El

7. All agents are driven towards their destination without
colliding. Specifically, the following remarks can be made:

All aircraft maintain their horizontal speed equal to thd10]
desiredu,q, except for aircraf2, which uses a higher
speed only while avoiding a collision with aircreft
Aircraft fly mostly level, i.eaw; = 0 and approach their [11]
destinations while their slope tends@o

The bounded climb and descent angle combined with
constant horizontal velocity results in bounded verticall2]
velocity. Whenay,y; is saturated|apnn;| > |&;| (begin-

ning of aircraft 1 and 5 paths), ahd@;| = u;4, a constant [13]
vertical velocity is used, as in current ATC practice.

The combined effects of the above remarks are ObViOLﬂ§4]
in aircraft's 1 climb-fly level-descenattern.

The initial and final positions of aircraft 4 result in a
straight line path with climbing angle greater that.
The aircraft performs a climbing circle to achieve thgig)
desired altitude while avoiding collision with aircraft 5.

VII. CONCLUSIONS

The control scheme presented here utilises the proven
properties of Navigation Functions, for the control of eaft-
like agents in 3D space, while respecting aircraft's per-
formance constraints. Compared to previous NF-based ap-
proaches, it yields results that more compatible with ATM
practice and aircraft's constraints, while maintaining th
formal guarantees of the NF framework. The proposed
I algorithm can be tuned via parameters representing pahctic
limitations of aircraft (speed, climb and descent angle).
Future work in this area focuses on further improving the
compatibility of our algorithm with ATC applications, by
incorporating curvature limits and further constraints.
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